Advanced Object Oriented
Programming

EECS2030Z

Who Am I?

» Dr. Burton Ma
» office

» Lassonde 2046

» hours : to be updated on the syllabus page
» email

» burton@cse.yorku.ca

Course Format

» everything you need to know will eventually be on the

York University Moodle site (not the learn.lassonde
Moodle site)

Labs

» in Prism computing labs (LAS1006)
» Lab Zero starts in Week 1

» self-guided, can be done anytime before the start of Week 2
» using the Prism lab environment
» using eclipse

» Labs 1-8 consist of a different set of programming
problems for each lab

» it is expected that you know how to use the lab
computing environment

Labs

» group lab work is allowed and strongly encouraged for
Labs 1-8 (not Lab o)
» groups of up to size 3
» see Academic Honesty section of syllabus
» TLDR Do not submit work that is not wholly your own

Tests

» all testing occurs during your regularly scheduled lab
using the EECS labtest environment

Test 1 15%
Test 2 15%
Test 3 15%
Exam 30%

» miss a test for an acceptable reason?
» see Evaluation: Missed tests section of syllabus

Textbook

» a set of freely available electronic notes is available
from the Moodle site

» recommended textbooks

» Building Java Programs, 4" Edition, S Roges and M Stepp

» Introduction to Programming in Java, 2™ Edition, R
Sedgewick and K Wayne

» does not cover inheritance
» Absolute Java, 6t Edition, W Savitch
» recommended references

» Java 8 Pocket Guide, Liguori and Liguori
» Effective Java, 3'9 Edition,] Bloch

Organization of a Java Program

Packages, classes, fields, and methods

Organization of a Typical Java Program

? one or more files

Organization of a Typical Java Program

&4 7Z€T0 Or one package name

10

Organization of a Typical Java Program

<€— zero or more import
statements

11

Organization of a Typical Java Program

- one class

Organization of a Typical Java Program

one or more fields (class
variables)

13

Organization of a Typical Java Program

> Zero or more more
constructors

14

Organization of a Typical Java Program

- one or more files
| | zero or one package name
zero or more import
statements
one class

zero or more fields (class
variables)

Zero or more more
constructors

> zero or more methods

Organization of a Typical Java Program

» it's actually more complicated than this
» static initialization blocks

non-static initialization blocks

classes inside of classes (inside of classes ...)

classes inside of methods

anonymous classes

vV Vv Vv V9V v

lambda expressions (in Java 8)

» see http://docs.oracle.com/javase/tutorial/java/javaO0O/index.html

16

Packages

» packages are used to organize Java classes into
namespaces

» a namespace is a container for names
» the namespace also has a name

17

Packages

» packages are use to organize related classes and
interfaces

» e.g., all of the Java API classes are in the package named
java

18

Packages

» packages can contain subpackages

» e.g., the package java contains packages named lang,
util, io, etc.

» the fully qualified name of the subpackage is the fully
qualified name of the parent package followed by a
period followed by the subpackage name

» e.g., java.lang, java.util, java.io

19

Packages

» packages can contain classes and interfaces

» e.g., the package java.lang contains the classes Object,
String, Math, etc.

» the fully qualified name of the class is the fully

qualified name of the containing package followed by
a period followed by the class name

» e.g.,, java.lang.0Object, java.lang.String,
java.lang.Math

20

Packages

» packages are supposed to ensure that fully qualified
names are unique

» this allows the compiler to disambiguate classes with
the same unqualified name, e.g.,

your.String s = new your.String("hello");
String t = "hello";

21

Packages

» how do we ensure that fully qualified names are
unique?
» package naming convention

» packages should be organized using your domain name in
reverse, e.g.,
» EECS domain name eecs.yorku.ca
» package name ca.yorku.eecs

» we might consider putting everything for this course
under the following package

) eecs2030

22

Packages

» we might consider putting everything for this course
under the following package

» eecs2030
» labs might be organized into subpackages:

) eecs2030.1abo
» eecs2030.1labl and soon

» tests might be organized into subpackages:
) eecs2030.testl
» eecs2030.test2 and soon

23

Packages

» most Java implementations assume that your directory
structure matches the package structure, e.g.,

» there is a folder eecs2030 inside the project src folder
» there is a folder 1ab@ inside the eecs2030 folder
» there is a folder 1ab1l inside the eecs2030 folder, and so on

24

Packages

% workspace - Java - EECS2030_W_2017_18/src/eecs2030/lab0/HelloWorld.java - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help
Hwiih g NI T O TR FOGY B I v P HYH vy Oo Yo

% Package Explorer % JuJUnit = [HelloWorld java

| ¥ 1 package eecs2030.labe;
= EECS2030_F_2016_17 2
& EECS2030 W 2016 17 i public class HelloWorld {
project folder |===T"®"EECS2030 W_2017_18 5 public static void main(String[] args) {
project sources folder " & SIC E 6 // TODO Auto-generated method stub
t# (default package) 7
€eC52030 folder P& eecs2030 8 }
___—#lab0 2
lab0 folder 4 HelloWorld. java 1? }

H# lab1
B test1
t test?
H test3
H testd

25

Methods

Basics

Methods

» a method performs some sort of computation

» a method is reusable

» anyone who has access to the method can use the method
without copying the contents of the method

» anyone who has access to the method can use the method
without knowing the contents of the method

» methods are described by their API (application
program interface); for example:

» https://www.eecs.yorku.ca/course archive/2017-
18/W /20307 /lectures/doc/weeko1/

27

Example APl method entry

isBetween

public static boolean isBetween (int min,
int max,

int wvalue)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum wvalue
max — a maximum value
value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

Precondition:

min is greater than or equal to max

28

Method header

» the first line of a method declaration is sometimes
called the method header

public static boolean isBetween(int min,

|] .
modifiers return type name int value)
E——

parameter list

29

Method parameter list

» the parameter list is the list of types and names that
appear inside of the parentheses

» public static boolean
isBetween(int min, int max, int value)

————— e . o

| parangeter list 3

» the names in the parameter list must be unique
» i.e., duplicate parameter names are not allowed

30

Method signature

» every method has a signature

» the signature consists of the method name and the types in
the parameter list

public static boolean isBetween(int min,
int max,
int value)

has the following signature

name number and types of parameters

A A
| | I 1

isBetween(int, int, int)
J

Y
signature

\

31

Method sighature

» other examples from java.lang.String

» headers
> §E£ing toUppercCase()
» char charAt(int index)

» int indexOf(String str, int fromIndex)
» void getChars(int srcBegin, int srcEnd, char[] dst,

”\\\\\; int dstBegin)

» signatures

» toUpperCase()

» charAt(int)
» indexOf(String, int)
» getChars(int, int, char[], int)

32

Method sighature

» method signatures in a class must be unique
» we can introduce a second method in the same class:

public static boolean
isBetweenSdouble min, double max, double value)

L

» but not this one:

public static boolean

isBetween(int value, int lo, int hi)
— D E—

33

Method sighature

» two or methods with the same name but different
signatures are said to be overloaded

public static boolean
isBetween(int min, int max, int value)

public static boolean
isBetween(double min, double max, double value)

34

Method return types

» all Java methods return nothing (void) or a single type
of value

» our method

public static boolean

e

isBetween(double min, double max, double value)

has the return type boolean

35

Methods

Preconditions and postconditions

Preconditions and postconditions

» recall the meaning of method pre- and postconditions

» precondition
» acondition that @Vﬁs‘cfiure is true immediately
before a method isinvoked wheektr s US' j Ha
» postcondition
» a condition that th@nust ensure is true
immediately after the method isinveked Q-ﬂ sshos VAN

J

37

Preconditions

» recall that a method precondition is a condition that
the client must ensure is true immediately before
invoking a method

» if the precondition is not true, then the client has no
guarantees of what the method willdo - m{?%/)) Ca /m/),zam

» for static methods, preconditions are conditions on the
values of the arguments passed to the method

» you need to carefully read the API to discover the
preconditions

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value

value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

min is less than or equal to max

precondition

39

min2
public static int minZ2 (List<Integer> t)

Given a list containing exactly 2 integers, returns the smaller of the two integers. The list t is not modified by

this method. For example: pre condition
T Test2F.min2 (t)
[=B, 91 ~5
[3, 3]
[12, @6l 6
Parameters:
t - a list containing exactly 2 integers
Returns:

the minimum of the two wvalues in t

Throws:

TllegalArgumentException - if the list does not contain exactly 2 integers
M

Precondition:

t is not null

\normaﬂ7 \10\A—uﬂl nc—see 7’1\/5

precondition

40

Preconditions

» if a method has a parameter that has reference type
then it is almost always assumed that a precondition
for that parameter is that it is not equal to null

» reminders:

» reference type means “not primitive type”
» null means “refers to no object”

» primitive types are never equal to null

A% Wf/’o\/\o/\"fj W‘/M % nu(/ 1@/ Pnkw}i‘yw #L/ﬂ(’f

41

Postconditions

» recall that a method postcondition is a condition that the

method must ensure is true immediately after the method is
invoked

» if the postcondition is not true, then there is something
wrong with the implementation of the method

» for static methods, postconditions are:

» conditions on the arguments after the method finishes
» conditions on the return value

42

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value
value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

Precondition: pOStCOIlditiOIl
min is less than or equal to max

43

min2

public static int minZ2 (List<Integer> t)

Given a list containing exactly 2 integers, returns the smaller of the two integers. The list t is not modified by

this method. For example:

postcondition
T Test2F.min2 (t)
[B, 91 ~5
[3, 3]
[12, @] 6
Parameters:
t - a list containing exactly 2 integers
Returns:
the minimum of the two values in t
postcondition
Throws:
TllegalArgumentException - if the list does not contain exactly 2 integers

Precondition:

t is not null

44

45

Methods

Implementation

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value
value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

Precondition:

min is less than or equal to max

Methods and classes

» in Java every method must be defined inside of a class

» we will try to implement our method so that it
matches its API:
» the method is inside the class named Test2F
» the class Test2F is inside the package eecs2030.test2

» eclipse demonstration here

47

package eecs2030.test2;

public class Test2F {

— boody A{ fha closs ~

Method body

» a method implementation consists of:
» the method header
» a method body

» the body is a sequence of Java statements inside of a pair of braces

{}

49

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

50

Methods with parameters

» if a method has parameters, then you can use the
parameter names as variables inside your method

» you cannot create new variables inside the method that
have the same name as a parameter

» you cannot use the parameters outside of the method
» we say that the scope of the parameters is the method body

» you may create additional variables inside your
method if you wish

» we will create a variable to store the return value of the
method

51

package eecs2030.test2;

public class Test2F {
st rc7{u/1 G AUB(QC«A valuQ

public static sBetween(int min, int max, int value) {
boolean result = true;

52

package eecs2030.test2;
public class Test2F {

public static boolean isBetween(int min, int max, int value) {
boolean result = true;
if (value <= min) {
result = false;
}
if (value >= max) {

result = false;

}é—— if VG/M Y Aﬁﬂ)&m men GAO”"“Y 77-?'/\
} WSW(JL 1 67(;507[0 -ﬂpm

53

Methods with return values

» if the method header says that a type is returned, then
the method must return a value having the advertised

type back to the client

» you use the keyword return to return the value back
to the client

54

package eecs2030.test2;
public class Test2F {

public static boolean isBetween(int min, int max, int value) {
boolean result = true;
if (value <= min) {
result = false;
}
if (value >= max) {
result = false;

}

return result;

55

Method return values

» a method stops running immediately if a return
statement is run

» this means that you are not allowed to have additional code
if a return statement is reached

» however, you can have multiple return statements

package eecs2030.test2;
public class Test2F {

public static boolean isBetween(int min, int max, int value) {

if (value <= min) {
return false; /@ \(l "H’\«S ll/\z vung 7‘1@\ HQ V\AU"M) S‘/T»PJ

// code not allowed here

}

if (value >= max) {
return false; — @ 11[}«L;; //'A-(waj%/‘ 7% IV\JLJ f/c,['f

// code not allowed here

}

return true; (;)
// code not allowed here

57

Alternative implementations

» there are many ways to implement this particular
method

package eecs2030.test2;
public class Test2F {

public static boolean isBetween(int min, int max, int value) {

if (value <= min{ |) value »>= max) {

return false; ~\
} R

return true;

59

package eecs2030.test2;
public class Test2F {

public static boolean isBetween(int min, int max, int value) {
if (value > min|&&\value < max) {
return true; \&’

))

return false;

60

package eecs2030.test2;
public class Test2F {
public static boolean isBetween(int min, int max, int value) {

boolean result = value > mi value < max;

return result; L\

} D

61

package eecs2030.test2;

public class Test2F {

public static boolean isBetween(int min, int max, int value) {

return value > min && value < max;

62

min2
public static int minZ2 (List<Integer> t)

Given a list containing exactly 2 integers, returns the smaller of the two integers. The list t is not modified by
this method. For example:

i Test2F.min2 (t)

[~B, 9] ~5

[3; 3]

[12 &l 6
Parameters:
t - a list containing exactly 2 integers
Returns:

the minimum of the two wvalues in t

Throws:

TllegalArgumentException - if the list does not contain exactly 2 integers

Precondition:

t is not null

package eecs2030.test2;

import java.util.List;

public class Test2F {

// implementation of isBetween not shown

public static int min2(List<Integer> t) {

package eecs2030.test2;

import java.util.List; kg%(v(' _\\
R s
public class Test2F {
o A

// implementation not shown

public static int min2(List<Integer> t) {

if (t.size() \! st me
throw new IllegalArgumentException("list size != 2");
} mothed S%:PS
#W" A/w) “int first = t.get(0); @{ﬁ/ 7414“"7"
}Z‘ /m‘} int second = t.get(1); % Ucfﬂ)’(’v‘
}

package eecs2030.test2;
import java.util.List;
public class Test2F {
// implementation not shown

public static int min2(List<Integer> t) {
if (t.size() != 2) {
throw new IllegalArgumentException("list size != 2");

}
int first = t.get(0);
int second = t.get(1);

if (first < second)‘{; dAQC((I'é M_o A/S'/ \,OL/M V\ H_2 /Sf

return first;

} 15 smaller ™han Hhe, SQCWJ

return second;

66

Invoking methods

Pass-by-value

static Methods

» a method that is static is a per-class member

>

client does not need an object reference to invoke the
method

client uses the class name to access the method

boolean isBetween = Test2F.isBetween(0, 5, 2);
—

static methods are also called class methods

[notes 1.2.4]

68

Invoking methods

» a client invokes a method by passing arguments to the
method

» the types of the arguments must be compatible with the
types of parameters in the method signature

» the values of the arguments must satisfy the preconditions
of the method contract

o ik

List<Integer> t = new ArrayList<Integer>();
t.add(100);

t.add(-99);

int min = Test2F.min2(t);

argument

Pass-by-value

» Java uses pass-by-value to:
» transfer the value of the arguments to the method
» transfer the return value back to the client

» consider the following utility class and its client...

70

import type.lib.Fraction;
public class Doubler {

private Doubler() {
}

// tries to double x
(:) public static void twice(int x) {
X =2 ¥ x;

}

// tries to double f
:l public static void twice(Fraction f) { : .
represents a fraction (i.e.,
long numerator = f.getNumerator(); has an integer numerator
f.setNumerator(2 * numerator); and denominator)

}

assume that a Fraction

71

import type.lib.Fraction;
public class TestDoubler {
public static void main(String[] args) {
int a = 1;

Doubler.twice(a);

Fraction b = new Fraction(1, 2);
Doubler.twice(b);

System.out.println(a); — in}'g 2? 1.?
System.out.println(b); ___ P*’WWLS /23 ?

72

Pass-by-value

» what is the output of the client program?
» try it and see

» an invoked method runs in its own area of memory
that contains storage for its parameters

» each parameter is initialized with the value of its
corresponding argument

73

Pass-by-value with reference types

ndghress A

)

64 client

Fract @ 500a the object at address 500
J !

name Jo b N this is an address
0\”0 caleS COV\S',TUC"'O/ : . because b is a
remeryy Qal\ : 500 | Fraction object reference variable
)}

(refer to objects)

ﬂo{' o S‘U"S gpc%w\ numer 1
“Trchor o V/2 denom 5

N

74

Pass-by-value with reference types

Fraction b =
new Fraction(1l, 2);

75

64
b
500
numer
denom

client

500a

Fraction object

value of b is not the
Fraction 1/2

valueof bisa
reference to the
new
Fraction object

Pass-by-value with reference types

64
Fraction b = b
new Fraction(1, 2);
Doubler.twice(b);

500
numer
denom

)@j
parameter (0“;(/"‘“,. 600
is an independent &
copy of the value

of argument b
(a reference)

client

500a

Fraction object

1

2

N5 1A own pm‘t

Lj

Doubler.twice

500a

the value of b
is passed to the
method
Doubler.twice

ogm'v\on?

Pass-by-value with reference types

64
Fraction b = b
new Fraction(1, 2);
Doubler.twice(b);

500
numer
denom

600

.F

77

client

500a

Fraction object

A2

2

Doubler.twice

500a

Doubler.twice
multiplies the
numerator of the
Fraction object by
2

Pass-by-value with primitive types

int a

1;

64

client

1

value of a is the

integer value that
we stored

T

this is the numeric
value because a is
a primitive variable

Pass-by-value with primitive types

the value of a
is passed to the
64 client I;Illethod .
int a = 1; . 1 Doubler.twice
Doubler.twice(a);

this is a different
Doubler.twice
method than the
previous example
(now resides at
address 800)

parameter X 800 | Doubler.twice

is an independent
X 1
copy of the value
of argument a
(a primitive)

79

Pass-by-value with primitive types

int a = 1;
Doubler.twice(a);

8o

64

800

client

1

Doubler.twice

X 2

Doubler.twice
multiplies the value
of x by 2;
that's it, nothing
else happens

Pass-by-value

» Java uses pass-by-value for all types (primitive and
reference)

» an argument of primitive type cannot be changed by a
method

» an argument of reference type can have its state changed by
a method

» pass-by-value is used to return a value from a method
back to the client

81

82

Documenting a method

Javadoc

Documenting

» documenting code was not a new idea when Java was
invented

» however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APlIs

» the tool that generates API documents from comments
embedded in the code is called Javadoc

Documenting

» Javadoc processes doc comments that immediately

precede a class, attribute, constructor or method
declaration

» doc comments delimited by /** and */

» doc comment written in HTML and made up of two parts
1. adescription

0 first sentence of description gets copied to the summary section

0 onlyone description block; can use <p> to create separate
paragraphs

>. block tags

0 begin with @ (@param, @return, @throws and many others)

O @pre. isanon-standard (custom tag used in EECS1030) for
documenting preconditions

Method documentation example

Eclipse will generate an empty Javadoc comment for you if you right-click on
the method header and choose Source—Generate Element Comment

/**

g min

o max

w value
%

g

public static boolean isBetween(int min, int max, int value) {
// implementation not shown

Method documentation example

The first sentence of the documentation should be short summary of the
method; this sentence appears in the method summary section.

/**
* Returns true if value is strictly greater than min and strictly

* less than max, and false otherwise.

*

* min

* max

* value
%

*/

public static boolean isBetween(int min, int max, int value) {

// implementation not shown

86

Method documentation example

You should provide a brief description of each parameter.

/**
* Returns true if value is strictly greater than min and strictly
* less than max, and false otherwise.
%
* @param min a minimum value
* @param max a maximum value
* @param value a value to check
* @return
*/
public static boolean isBetween(int min, int max, int value) {

// implementation not shown

Method documentation example

Provide a brief description of the return value if the return type is not void. This
description often describes a postcondition of the method.

/**
* Returns true if value is strictly greater than min and strictly
* less than max, and false otherwise.

* @param min a minimum value
* @param max a maximum value
* @param value a value to check
* @return true if value is strictly greater than min and strictly
* less than max, and false otherwise
*/
public static boolean isBetween(int min, int max, int value) {
// implementation not shown

38

Method documentation example

» if a method has one or more preconditions, you should
use the EECS2030 specific @pre. tag to document
them

Method documentation example

Describe any preconditions using the EECS2030 specific @pre. tag. You have to
manually do this.

/**

* Returns true if value is strictly greater than min and strictly

*

less than max, and false otherwise.

*

@param min a minimum value

*

@param max a maximum value

*

@param value a value to check

*

@return true if value is strictly greater than min and strictly

*

less than max, and false otherwise

*

@pre min is less than or equal to max

*/
public static boolean isBetween(int min, int max, int value) {
// implementation not shown

90

Method documentation example

» if a method throws an exception then you should use
the @throws tag to document the exception

o1

/**
* Given a list containing exactly 2 integers, returns the smaller of the
* two integers. The list <code>t</code> is not modified by this method.
* For example:

* <pre>
* t

HTML markup is also allowed

*

@pre t is not null

*

@param t a list containing exactly 2 integers

*

@return the minimum of the two values in t

*

@throws IllegalArgumentException if the list does not contain exactly 2

* integers
*/
public static int min2(List<Integer> t) {

93

Utility classes

Review: Java Class

» a class is a model of a thing or concept

» in Java, a class is usually a blueprint for creating
objects

» fields (or attributes)

» the structure of an object; its components and the information
(data) contained by the object

» methods

» the behaviour of an object; what an object can do

94

Utility classes

» sometimes, it is useful to create a class called a utility
class that is not used to create objects

» such classes have no constructors for a client to use to
create objects

» in a utility class, all features are marked as being
static
» you use the class name to access these features
» examples of utility classes:
» java.lang.Math
» java.util.Arrays
» java.util.Collections

95

Utility classes

» the purpose of a utility class is to group together
related fields and methods where creating an object is
not necessary

» java.lang.Math
» groups mathematical constants and functions

» do not need a Math object to compute the cosine of a
number

» java.util.Collections
» groups methods that operate on Java collections
» do not need a Collections object to sort an existing List

96

Class versus utility class

» a class is used to create instances of objects where each
instance has its own state

» for example:

» the class java.awt.Point is used to create instances that
represent a location (X, y) where x and y are integers

public static void main(String[] args) {

Point p = new Point(0, 0); // point (@, 0)
Point g = new Point(17, 100); // point (17, 100)
Point r = new Point(-1, -5); // point (-1, -5)

}

» each instance occupies a separate location in memory
which we can illustrate in a memory diagram

97

Name

Address
100

200

300

400

Point class Point class is loaded

into memory

Point instance Point instance with
) state (@, O)
(%)

Point 1nstance Point instance with

17 state (17, 100)
100

Point instance Point instance with
-1 state (-1, -5)
-5

continued on next slide

Name

the variables
created in the
main method

99

Address
500

main method

200a

300a

400a

the main method
the object at address 200

the object at address 300
the object at address 400

T

these are addresses
because p, q,and r
are reference variables
(refer to objects)

Class versus utility class

» a utility class is never used to create objects

» when you use a utility class only the class itself
occuples any memory

public static void main(String[] args) {

Math.cos(Math.PI / 3.0);
Math.sin(Math.PI / 3.0);

double x
double y

// notice that we never created a Math object

}

100

Name Address

100 Math class Math class is loaded
PI 3.1415. ... into memory but there
are no Math instances
E 2.7182....

200 main method
X 0.8660.... the value cos(n/3)
y 9.5 the value sin(m/3)

T

these are values (not
addresses) because
x and y are primitive
variables (double)

101

A simple utility class

» implement a utility class that helps you calculate

Einstein's famous mass-energy equivalence equation
E = mc? where

» m is mass (in kilograms)

» cisthe speed of light (in metres per second)
» E is energy (in joules)

102

Start by creating a package, giving the class a name, and creating the class
body block.

package eecs2030;

public class Relativity {

103

Add a field that represents the speed of light.

package eecs2030;
public class Relativity {

public static final double C = 299792458;

104

Add a method to compute E = mc?.

package eecs2030;

public class Relativity {
public static final double C = 299792458;
public static double massEnergy(double mass) {

double energy = mass * Relativity.C * Relativity.C;
return energy;

105

Add a method to compute E = mc?.

package eecs2030;

public class Relativity {
public static final double C = 299792458;
public static double massEnergy(double mass) {

double energy = mass * Relativity.C * Relativity.C;
return energy;

106

Here's a program that uses (a client) the Relativity utility class.

package eecs2030;
public class OneGram {

public static void main(String[] args) {
double mass = 0.001;
double energy = Relativity.massEnergy(mass);

System.out.println("1 gram = " + energy + " Joules");

107

Fields

public static final double C = 299792458,

» afield is a member that holds data
» a constant field is usually declared by specitying

.. modifiers

1. access modifier public

. static modifier static

3. final modifier final
2. type double
3. name C

4. value 299792458

108

Fields

» field names must be unique in a class
» the scope of a field is the entire class
» [notes| use the term “field” only for public fields

109

public Fields

» a public field is visible to all clients

// client of Relativity
int speedOfLight = Relativity.C;

110

static Fields

» afield that is static is a per-class member

» only one copy of the field, and the field is associated with
the class

» every object created from a class declaring a static field shares the
same copy of the field

» textbook uses the term static variable
» also commonly called class variable

111

static Fields

64
Relativity y = new Relativity(); y
Relativity z = new Relativity(); Z
500
C
belongs to class —7
1000
no copy of ???
C
1100

227

112

client invocation

1000a

1100a

Relativity class

299792458

Relativity object

Relativity object

static Field Client Access

» aclient should access a public static field without
using an object reference

» use the class name followed by a period followed by the
attribute name

public static void main(String[] args) {
double sunDistance = 149.6 * 1le9;
double seconds = sunDistance / Relativity.C;
System.out.println(
“time for Light to travel from sun to earth " +
seconds + " seconds");

time for light to travel from sun to earth 499.01188641643546 seconds

13

static Attribute Client Access

» it is legal, but considered bad form, to access a public
static attribute using an object

public static void main(String[] args) {
double sunDistance = 149.6 * 1le9;
Relativity y = new Relativity();
double seconds = sunDistance / y.C;
System.out.println(
“time for Light to travel from sun to earth " +
seconds + " seconds");

time for light to travel from sun to earth 499.01188641643546 seconds

114

final Fields

» afield that is final can only be assigned to once

» public static final fields are typically assigned when
they are declared

public static final double C = 299792458;

» public static final fields are intended to be constant
values that are a meaningful part of the abstraction
provided by the class

15

final Fields of Primitive Types

» final fields of primitive types are constant

public class Relativity {
public static final double C = 299792458;

}

// client of Relativity
public static void main(String[] args) {

Relativity.C = 100; // will not compile;
// field C
// is final and
// previously assigned

16

final Fields of Immutable Types

» final fields of immutable types are constant

public class NothingToHide {
public static final String X = "peek-a-boo";

}

// client of NothingToHide
public static void main(String[] args) {
NothingToHide.X = "i-see-you";
// will not compile;
// field X is final and
// previously assigned

» String is immutable
» it has no methods to change its contents

17

final Fields of Mutable Types

4

final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {
public static final Fraction HALF =
new Fraction(1, 2);

// client of ReallyNothingToHide
public static void main(String[] args) {
ReallyNothingToHide.HALF.setDenominator(3);
// works!!
// HALF is now 1/3

18

final Fields of Mutable Types

final

not final!

not final!

HALF 192
700

numer

denom

ReallyNothingToHide class

700a

Fraction obj

ReallyNothingToHide.HALF.setDenominator(3);

119

final fields

» avoid using mutable types as public constants

» they are not logically constant

120

new Relativity objects

» our Relativity class does not expose a constructor
» but

Relativity y = new Relativity();
is legal

» if you do not define any constructors, Java will generate a
default no-argument constructor for you

» e.g., we get the public constructor
public Relativity() { }

even though we did not implement it

121

Preventing instantiation

» in a utility class you can prevent a client from making
new instances of your class by declaring a private
constructor

» a private field, constructor, or method can only be
used inside the class that it is declared in

122

package eecs2030;

public class Relativity {
public static final double C = 299792458;
private Relativity() {

// private and empty by design

public static double massEnergy(double mass) {
double energy = mass * Relativity.C * Relativity.C;
return energy;

123

Preventing instantiation

» every utility class should have a private empty no-
argument constructor to prevent clients from making
objects using the utility class

124

Introduction to Testing

Testing

» testing code is a vital part of the development process

» the goal of testing is to find defects in your code

» Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for

showing their absence.
—Edsger W. Dijkstra

126

Testing with a main method

» if I had asked you to test your worksheet 1 methods
you probably would have written a main method

127

public static void main(String[] args) {

// avg

int a = 1;

int b = 1;

int ¢ = 1;
System.out.println(

String.format("average of %d, %d, and %d : ", a, b, c) +
Test2E.avg(a, b, c));

// swap2

List<Integer> t = new ArrayList<Integer>();
t.add(3);

t.add(5);

String s = t.toString();

Test2E.swap2(t);

System.out.println(

String.format("swap2(%s) : %s", s, t.toString()));

128

// allGreaterThan

.clear();

.add(4);

.add(5);

.add(6);

.add(7);

.add(8);

System.out.println(

String.format("allGreaterThan(%s, %s) : %s",
t.toString(), 5, Test2E.allGreaterThan(t, 5)));

t
t
t
t
t
t

// tolnt

t.clear();

t.add(1);

t.add(2);

t.add(3);

System.out.println(

String.format("toInt(%s) : %d",
t.toString(), Test2E.toInt(t)));

129

Testing with a main method

» running the main method results in the following
output:

average of 1, 1, and 1 : 1.0

swap2([3, 5]) : [5, 3]

allGreaterThan([4, 5, 6, 7, 8], 5) : [6, 7, 8]
toInt([1, 2, 3]) : 123

130

Testing with a main method

» testing using a single main method has some
disadvantages:

» someone has to examine the output to determine if the
tests have passed or failed

» all of the tests are in one method

» we can’t run tests independently from one another

» there is no easy way to pick which tests we want to run

131

JUnit

» JUnit is a unit test framework

» “A framework is a semi-complete application. A
framework provides a reusable, common structure to
share among applications.”

» from the book JUnit in Action

132

JUnit

» “A unit test examines the behavior of a distinct unit of
work. Within a Java application, the “distinct unit of
work” is often (but not always) a single method. ... A
unit of work is a task that isn't directly dependent on
the completion of any other task.”

» from the book JUnit in Action

133

A JUnit test example

» let’s write a test for the worksheet 1 method avg

» we need a class to write the test in
» we need to import the JUnit library

» we need to write a method that implements the test

» happily, eclipse helps you do all of this

» in the Package Explorer, right click on the class that you
want to test and select New > JUnit Test Case

134

package eecs2030.test2;

import static org.junit.Assert.*; €@ static import: allows you to use
import org.junit.Test;

public class Test2ETest {

@Test

public void
int a =
int b =
int c =

double expected = -10.0 / 3;

test_avg() {
-99;
100;
-11;

static methods from the class
org.junit.Assert without specifying
the class name

Avoid the widespread use of static
imports. Although it is convenient
being able to not include the class
name in front of the method name,
it makes it difficult to tell which
class the method comes from™.

double actual = Test2E.avg(a, b, c);
double delta = le-9;
assertEquals (expected, actual, delta);

135 *https://docs.oracle.com/javase/8/docs/technotes/quides/lanquage/static-import.html

package eecs2030.test2;

import static org.junit.Assert.*;
import org.junit.Test;

public class Test2ETest {

@Test — An annotation; JUnit uses the @Test

public void test_avg() { annotation to d.etermlne which
methods are unit tests.

int a = -99;
int b = 100;
int ¢ = -11;

double expected = -10.0 / 3;

double actual = Test2E.avg(a, b, c);
double delta = le-9;

assertEquals (expected, actual, delta);

136

package eecs2030.test2;

import static org.junit.Assert.*;
import org.junit.Test;

public class Test2ETest {

@Test

public void test_avg() {
int a = -99;
int b = 100;
int ¢ = -11;

double expected = -10.0 / 3;

double actual = Test2E.avg(a, b, c);
double delta = le-9;
gssertEquaLs(expected, actual, deLta)%

|
} oA JUnit method that throws an exception if expected and actual differ
by more than delta. JUnit handles the exception and reports the test
failure to the user.

137

A JUnit test example

» consider testing swap2
» swap2 does not return a value
» swap2 modifies the state of the argument list

» therefore, we need to test that the argument list has the expected
state after swap2 finishes running

» a method that modifies the state of an argument to the
method is said to have a side effect

138

@Test

public void test_swap2() {
List<Integer> actual = new ArrayList<Integer>();
actual.add(-99);
actual.add(88);

List<Integer> expected = new ArraylList<Integer>();
expected.add(88);
expected.add(-99);

Test2E.swap2(actual);
assertEquals (expected, actual);

} !
A JUnit method that throws an exception if expected and actual are
not equal. JUnit handles the exception and reports the test
failure to the user.

139

Creating tests

» based on the previous example, when you write a test
in you need to determine:

» what arguments to pass to the method

» what the expected return value is when you call the method
with your chosen arguments

» if the method does not return a value then you need to determine
what the expected results are of calling the method with your
chosen arguments

140

Creating tests

» for now, we will define a test case to be:
» a specific set of arguments to pass to the method

» the expected return value (if any) and the expected results
when the method is called with the specified arguments

141

Creating tests

» to write a test for a static method in a utility class you
need to consider:

» the preconditions of the method
» the postconditions of the method
» what exceptions the method might throw

142

Creating tests: Preconditions

» recall that method preconditions often place
restrictions on the values that a client can use for
arguments to the method

143

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value
value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

Precondition:

min is less than or equal to max

precondition

144

min2
public static int minZ2 (List<Integer> t)

Given a list containing exactly 2 integers, returns the smaller of the two integers. The list t is not modified by

this method. For example: pre condition
i Test2F.min2 (t)
[=B, 91 ~5
[3, 3]
[12, @6l 6
Parameters:
t - a list containing exactly 2 integers
Returns:

the minimum of the two wvalues in t

Throws:

TllegalArgumentException - if the list does not contain exactly 2 integers

Precondition:

t is not null

precondition

145

Creating tests: Preconditions

» the arguments you choose for the test should satisfy
the preconditions of the method

» but see the slides on testing exceptions!

» it doesn’'t make sense to use arguments that violate the
preconditions because the postconditions are not
guaranteed if you violate the preconditions

146

Creating tests: Postconditions

» recall that a postcondition is what the method
promises will be true after the method completes
running

» a test should confirm that the postconditions are true

» many postconditions require more than one test to
verify

147

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value
value - a value to check

Returns:

true if value is strictly greater than min and strictly less than max, and false

otherwise

Precondition: pOStCOIlditiOIl
min is less than or equal to max

requires one test to verify a return
value of true and a second test to
verify a return value for false

148

min2

public static int minZ2 (List<Integer> t)

Given a list containing exactly 2 integers, returns the smaller of the two integers. The list t is not modified by

this method. For example:

postcondition
T Test2F.min2 (t)
[B, 91 ~5
[3, 3]
[12, @] 6
Parameters:
t - a list containing exactly 2 integers
Returns:
the minimum of the two values in t
postcondition
Throws:
TllegalArgumentException - if the list does not contain exactly 2 integers

Precondition:

t is not null

149

Creating tests: Exceptions

» some methods having preconditions throw an
exception if a precondition is violated

» if the API for the method states that an exception is
thrown under certain circumstances then you should
test those circumstances

» even if writing such a test requires violating a precondition

150

@Test(expected = IllegalArgumentException.class)
public void test_swap2 throws() {

List<Integer> t = new ArrayList<Integer>();
Test2E.swap2(t);

@Test(expected = IllegalArgumentException.class)
public void test_swap2 throws2() {

List<Integer> t = new ArrayList<Integer>();
t.add(10000);

Test2E.swap2(t);

A JUnit test that is expected to result

inan IllegalArgumentException
being thrown. The test fails if an

IllegalArgumentException
is not thrown.

151

@Test(expected = IllegalArgumentException.class)
public void test_swap2 throws() {
List<Integer> t = new ArrayList<Integer>();
Test2E.swap2(t);

@Test(expected = IllegalfirgumentException.class)
public void test_swap2 tfirows2() {
List<Integer> t
t.add(10000) ;
Test2E.swap2(t);

nefl ArrayList<Integer>();

swap2 should throw an exception
because t is empty.

152

@Test(expected = IllegalArgumentException.class)
public void test_swap2 throws() {
List<Integer> t = new ArrayList<Integer>();
Test2E.swap2(t);

@Test(expected = IllegalArgumentException.class)
public void test_swap2 throws2() {
List<Integer> t = new ArrayList<Integer>();
t.add(10000);
Test2E.swap2(t);

swap2 should throw an exception
because t has only one element.

153

Choosing test cases

» typically, you use several test cases to test a method

» the course notes uses the term test vector to refer to a
collection of test cases

» it is usually impossible or impractical to test all
possible sets of arguments

154

Choosing test cases

» when choosing tests cases, you should consider using
» arguments that have typical (not unusual) values, and
» arguments that test boundary cases

» argument value around the minimum or maximum value allowed
by the preconditions

» argument value around a value where the behavior of the method
changes

155

Example of a boundary case

» consider testing the method avg
» the method has no preconditions

» the boundary values of the arguments a, b, and ¢ are
Integer.MAX_VALUE and Integer.MIN_VALUE

156

@Test

public void test_avg boundary() {
int a = Integer.MAX_VALUE;
int b = Integer.MAX_VALUE;
int ¢ = Integer.MAX_VALUE;
double expected = Integer.MAX_VALUE;
double actual = Test2E.avg(a, b, c);
double delta = l1le-9;
assertEquals(expected, actual, delta);

157

Example of a boundary case

» consider testing the method isBetween
» the method has a precondition that min <= max

isBetween

public static boolean isBetween(int min,
int max,

int value)

Returns true if value is strictly greater than min and strictly less than max, and false otherwise.

Parameters:

min — a minimum value
max — a maximum value
value — a value to check

Returns:

true if value 1is strictly greater than min and strictly less than max, and false

otherwise

Precondition:

min is less than or equal to max

Example of a boundary case

» boundary cases:

» value == min + 1

» expected return value: true
» value == min

» expected return value: false
» value == max

» expected return value: false
» value == max - 1

» expected return value: true
» min == max

» expected result: no exception thrown
» min == max - 1

» expected result: I1legalArgumentException thrown
159

